Area \& Volume of Similar Shapes Question Paper

Course	EdexcellGCSE Maths
Section	4. Geometry \& Trigonometry
Topic	Area \& Volume of Similar Shapes
Difficulty	Very Hard

Time allowed: 50

Score: /37
Percentage: /100

Question 1

$L M N$ is a right-angled triangle.

Angle $N L M=90^{\circ}$
$P Q$ is parallel to $L M$.
The area of triangle $P N Q$ is $8 \mathrm{~cm}^{2}$
The area of triangle $L P Q$ is $16 \mathrm{~cm}^{2}$
Work out the area of triangle $L Q M$.

Question 2

\mathbf{A} and \mathbf{B} are two similarvases.

A

Diagram NOT

accurately drawn

Vase \mathbf{A} has height 10 cm .
Vase \mathbf{B} has height 15 cm .
The difference between the volume of vase \mathbf{A} and the volume of vase \mathbf{B} is $1197 \mathrm{~cm}^{3}$
Calculate the volume of vase \mathbf{A}

B

Question 3

The diagram shows two similar vases, \mathbf{A} and \mathbf{B}.

Diagram NOT
accurately drawn

The height of vase \mathbf{A} is 9 cm and the height of vase \mathbf{B} is 13 cm .
Given that

$$
\text { surface area of vase } \mathbf{A}+\text { surface area of vase } \mathbf{B}=1800 \mathrm{~cm}^{2}
$$

calculate the surface area of vase \mathbf{A}.

Question 4

The total surface area of a solid hemisphere is equal to the curved surface area of a cylinder.
The radius of the hemisphere is $r \mathrm{~cm}$.
The radius of the cylinder is twice the radius of the hemisphere.
Given that

$$
\text { volume of hemisphere : volume of cylinder }=1: \mathrm{m}
$$

find the value of m.

Question 5

A frustum is made by removing a small cone from a large cone.
The cones are mathematically similar.

Diagram NOT
accurately drawn

The large cone has base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.
Given that

$$
\frac{\text { volume of frustum }}{\text { volume of large cone }}=\frac{98}{125}
$$

find an expression, in terms of h, for the height of the frustum.

Question 6

A standard tin and a large in are mathematically similar.
The volume of the large tin is 50% more than the volume of the standard tin.
Both tins are cylinders.
The radius of the standard tin is 10 cm .
Calculate the radius of the large tin.

Question 7

The area of pentagon A is $73.5 \mathrm{~cm}^{2}$.
The area of pentagon B is $6 \mathrm{~cm}^{2}$.
Find the ratio perimeter of pentagon A : perimeter of pentagon B in its simplest form.

Question 8a

The diagram shows a company logo made from a rectangle and a major sector of a circle. The circle has centre O and radius $O A$.
$O A=O D=0.5 \mathrm{~cm}$ and $A B=1.5 \mathrm{~cm}$.
E is a point on $O C$ such that $O E=0.25 \mathrm{~cm}$ and angle $O E D=90^{\circ}$.
Calculate the perimeter of the logo.

Question 8b

Calculate the area of the logo.
cm^{2}
[3 marks]

Question 8c

A mathematically similar logo is drawn.
The area of this logo is $77.44 \mathrm{~cm}^{2}$.
Calculate the radius of the major sector in this logo.

