Area & Volume of Similar Shapes Question Paper

Course	Edexcel IGCSE Maths	
Section	4. Geometry & Trigonometry	
pic Area & Volume of Similar Shapes		
Difficulty	Very Hard	

Time allowed: 50

Score: /37

Percentage: /100

 LMN is a right-angled triangle.

Angle NLM= 90° PQ is parallel to LM.

The area of triangle PNQ is 8 cm 2 The area of triangle LPQ is 16 cm 2

Work out the area of triangle LQM.

[4 marks]

 ${f A}$ and ${f B}$ are two similar vases.

Diagram **NOT** accurately drawn

Vase ${f A}$ has height 10 cm.

Vase ${f B}$ has height 15 cm.

The difference between the volume of vase ${\bf A}$ and the volume of vase ${\bf B}$ is 1197 cm³

Calculate the volume of vase ${f A}$

.....cm³
[4 marks]

The diagram shows two similar vases, ${f A}$ and ${f B}$.

Diagram **NOT** accurately drawn

The height of vase ${\bf A}$ is 9cm and the height of vase ${\bf B}$ is 13 cm.

Given that

surface area of vase \mathbf{A} + surface area of vase \mathbf{B} = 1800 cm²

calculate the surface area of vase \mathbf{A} .

.....cm²
[4 marks]

www.mikedemy.com

Question 4

The total surface area of a solid hemisphere is equal to the curved surface area of a cylinder.

The radius of the hemisphere is r cm.

The radius of the cylinder is twice the radius of the hemisphere.

Given that

volume of hemisphere : volume of cylinder = 1:m

find the value of m.

[4 marks]

A frustum is made by removing a small cone from a large cone.

The cones are mathematically similar.

The large cone has base radius \emph{r} cm and height \emph{h} cm. Given that

$$\frac{\text{volume of frustum}}{\text{volume of large cone}} = \frac{98}{125}$$

find an expression, in terms of \boldsymbol{h} , for the height of the frustum.

cm

[4 marks]

Question 6	
A standard tin and a large tin are mathematically similar. The volume of the large tin is 50% more than the volume of the standard tin.	
Both tins are cylinders. The radius of the standard tin is 10cm.	
Calculate the radius of the large tin.	
	cm
	[4 marks]
Question 7	
The area of pentagon A is $73.5~cm^2$. The area of pentagon B is $6~cm^2$.	
Find the ratio $perimeter of pentagon A: perimeter of pentagon B in its simplest form.$	
	[2 marks]

Question 8a

The diagram shows a company logo made from a rectangle and a major sector of a circle.

The circle has centre O and radius OA.

OA = OD = 0.5 cm and AB = 1.5 cm.

E is a point on OC such that OE = 0.25 cm and angle $OED = 90^{\circ}$.

 ${\it Calculate the perimeter of the logo}.$

 	cm
	[5 marks]

www.mikedemy.com

Question 8b	
Calculate the area of the logo.	
	cm ²
	[3 marks]
Question 8c	
A mathematically similar logo is drawn. The area of this logo is 77.44 cm ² .	
Calculate the radius of the major sector in this logo.	
	cm
	[3 marks]